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THE TRADE-OFF BETWEEN REGULARITY AND STABILITY 
IN TIKHONOV REGULARIZATION 

M. THAMBAN NAIR, MARKUS HEGLAND, AND ROBERT S. ANDERSSEN 

ABSTRACT. When deriving rates of convergence for the approximations gener- 
ated by the application of Tikhonov regularization to ill-posed operator equa- 
tions, assumptions must be made about the nature of the stabilization (i.e., 
the choice of the seminorm in the Tikhonov regularization) and the regularity 
of the least squares solutions which one looks for. In fact, it is clear from 
works of Hegland, Engl and Neubauer and Natterer that, in terms of the rate 
of convergence, there is a trade-off between stabilization and regularity. It 
is this matter which is examined in this paper by means of the best-possible 
worst-error estimates. The results of this paper provide better estimates than 
those of Engl and Neubauer, and also include and extend the best possible 
rate derived by Natterer. The paper concludes with an application of these 
results to first-kind integral equations with smooth kernels. 

1. INTRODUCTION 

In the solution of ill-posed operator equations, Tikhonov regularization with a 
suitable regularizing operator has played a seminal role (cf. [6] and [18]). The 
reasons are two-fold. On the one hand, it has had a considerable success in gen- 
erating stable approximations to the solutions of practical inverse problems [7, 2]. 
On the other hand, it has useful equivalent mathematical representations, such 
as the Euler-Lagrange equations and its minimum-norm least squares interpreta- 
tion, which allow a rigorous study of its mathematical and numerical properties 
(cf. Locker and Prenter [14, 15], Engl and Neubauer [3], Natterer [20], and Nair 
[19]). In fact, the motivation for detailed and careful investigations of the finer 
theoretical properties of Tikhonov regularization is the success of its application in 
the solution of practical inverse problems. 

For example, such information is required in optimizing the choice of the regular- 
ization parameter. In particular, within this framework, a key consideration is the 
rate of convergence of Tikhonov approximations as a function of the regularization 
parameter. Because of both its practical as well as its theoretical importance, it is 
a topic which has already been examined from different points of view by various 
authors including Natterer [20], Engl and Neubauer [3], Neubauer [21], Hegland 
[10], Schock [23], Nair [19], and George and Nair [4, 5]. 

What is clear from the earlier works is that, in terms of the rate of convergence, 
there is a trade-off between the degree of stabilization built into the Tikhonov 
regularization and the regularity imposed on the solution. One sees this clearly in 
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the work of Hegland [10], as well as Engl and Neubauer [3], though the nature of 
the trade-off, which is the focus of this paper, is not explicitly explored. 

2. PRELIMINARIES 

In this section, we introduce basic concepts and notation used throughout the 
paper. 

We always let K: X -? Y denote a bounded linear operator between Hilbert 
spaces X and Y with its range R(K) not necessarily closed in Y. As the canonical 
ill-posed problem to which Tikhonov regularization will be applied, we consider 
the operator equation 

(1) Kx =y, y E Y. 

Furthermore, we let L denote a densely defined closed linear operator with do- 
main D(L) C X and range R(L) C Z, where Z is also a Hilbert space. Tikhonov 
regularization, with regularizing operator L, applied to (1), is defined variationally 
as the problem of minimizing, for ae > 0 (cf. [25]), the Tikhonov functional G, 
defined by 

Go,(x) :IIKx - y112 + aiILxII2, x E D(L). 

The Euler-Lagrange equation or regularized equation formulation of Tikhonov 
regularization is 

(2) (K*K + atL*L)x, = K*y, 

where xc, denotes, for a fixed value of the regularization parameter Ol and the regu- 
larizing operator L, the Tikhonov regularization solution of (1). Any minimizer of 
G, also solves the Euler-Lagrange equation, and is, thus, an element of D(L*L), and 
conversely, any solution of the Euler-Lagrange equation minimizes G, (cf. Locker 
and Prenter [14]). 

For L = I, equation (2) is uniquely solvable, and, if y E D(Kt), the domain 
of the Moore-Penrose inverse Kt, then xc, -x as o -? 0, where x := Kty is the 
minimum-norm least squares solution of (1) (cf. Groetsch [6]). 

FRom a practical point of view, however, it is more appropriate to seek the least 
squares solution xo which minimizes the seminorm IILxII for L 0 I (cf. Varah [27]); 
i.e., one looks for xo such that 

Xo E SY := {x i D(L) I IIKx - yll < IIKu - yll,Vu E D(L)} 

and 

IILxoll < IILxll for all x E Sy 
In applications, K is often a compact integral operator with a nondegenerate kernel, 
and L a differential operator (cf. [15]). 

Choices for the regularizing operator L, different from I, were suggested in the 
earliest papers discussing regularization [22]. Practical computations show that 
this approach can lead to smaller errors in some cases [26]. For special choices of 
L, theoretical improvements in convergence were established by Natterer [20]. A 
parameter choice strategy for such situations was proposed by Neubauer [21]; but, 
such deliberations do not cover the use of general differential regularizers L for the 
solution of first-kind integral equations with very smooth kernels (such as Fujita's 
equation [16]). Nevertheless, this situation has been examined by Hegland [10]. 
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If the data y is only known approximately as y6, with IIY - yill < 6, 6 > 0, then 
one must solve 

(3) (K*K + aL*L)x4 = K*yS 

instead of (2). Here, the choice of the regularization parameter a (depending on 
6 and possibly ys) is important, for, in general, the family {x'5}1>o need not be 
bounded. As an example, consider a K such that R(K) is not closed and L = I. 
In this case, the family {(K*K + aI)-lK*}j>o is not uniformly bounded. It can 
then be seen from the Uniform Boundedness Principle, that, for each 6 > 0, there 
exists y8 E Y with IIy - y5 < 6 such that {xE5}1>o is not bounded in X. 

Practical considerations suggest that it is desirable to choose the regularization 
parameter a during the computation of x4, using a so-called a posteriori method, 
rather than an a priori method based on 6 only (cf. [1]). In fact, we will use a 
modified form of a method suggested by Schock [23] for the case L = I, where a is 
computed to satisfy 

(4) IlKx - y'll= q P>O, q>?. 

Convergence for this method has been further investigated by Nair [19], and by 
George and Nair [4, 5]. Below, this analysis is extended to a more general class of 
L. 

In this paper, the error in a Tikhonov regularization approximation is compared 
with the best possible worst error 

EM(p,6) := infsup{I|x - R(y6,8)II I x E D(M), yE E Y; 

IIMxll < p, ||Kx - y6ll < 6}. 

The infimum runs over all reconstruction algorithms R: Y x (0, do] -> X for some 
6o > 0, where M is a densely defined linear operator related to L with domain 
D(M) C X which specifies the 'smoothness' of the solution in some sense. 

No regularization method and parameter choice is able to get errors of order less 
than EM (p, 6) for a particular M and p. 

It is proved in Micchelli and Rivlin [17] that 

(5) eM(p, 6) < EM(P, 6) < 2 eM(p, 6), 

where 

eM(p,6) := sup{IlxIl I x E D(M), IlMxIl < p, IlKxll < 6}. 

A method for obtaining approximations x8 := R(S, y5) to xo corresponding to a 
reconstruction algorithm R, is said to be an optimal-order regularization method, 
with respect to an operator M, if one has 

IIxo - x25I = O(eM(p, 5)) 

for all xo E-D(M), with fIMxoII < p. 
The above quantity eM (p, 6) should be compared with. the worst error that a 

regularization method, using a specific regularization operator, can generate under 
the most favorable smoothness conditions. Estimates of this kind are well known 
for the case L = I and are representative of the saturation phenomena discussed 
in [8]. 
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3. SOLVABILITY OF THE REGULARIZED EQUATION 

In order to guarantee the unique solvability of the regularized equations (2) 
and (3), we assume that the following completion condition (cf. Morozov [18, p.3]) 

(6) IlKx 12 + ILxI12 > -11XI12, X E D(L)) 
holds for some y > 0. 

In fact, we derive the following result, which is similar to that obtained by Locker 
and Prenter [14]. 

Proposition 3.1. If the completion condition (6) holds, then 

(i) (u, v)* := (Ku, Kv) + (Lu, Lv), with u, v E D(L), defines a complete inner 
product on D(L), and 

(ii) for every ca > 0, the operator K*K + caL*L is a closed, self-adjoint and 
bijective linear operator with domain D(L*L), and its inverse is a bounded 
linear operator. 

Proof. (i) The completion condition (6) implies the positive definiteness of (,-)*, 
and the remaining axioms for (., .)* to be an inner product follow from its definition. 

It remains to show that any Cauchy sequence with respect to the norm 11 
defined by 

IIxII* := V+xx/, x E. D(L)) 

converges. If (Xn) is a Cauchy sequence with respect to the norm 11 then it 
follows that (KXn) and (LXn) are both Cauchy sequences, in the Hilbert spaces Y 
and Z, respectively. By the completion condition (6), (Xn) is a Cauchy sequence in 
X. Thus, there exist limits of these three sequences, which can be defined formally 
as 

xn - x, Kxn - y and LXn -z, xEX,y Y,z Z. 

Since K is bounded, Kx = y and, as L is closed, x E D(L) and Lx = z. Thus, (xn) 
converges to x with respect to the norm 11 * II*. 

(ii) Now, we observe (cf. [12]) that the operator L*L is closed and self-adjoint, and 
K*K is bounded and self-adjoint, and so the operator K*K+caL*L: D(L*L) -? X 
is also closed and self-adjoint. 

Then, from the completion condition (6) and the Schwarz inequality we have 

(K*K + caL*L)xll llxll > ((K*K + caL*L)x, x) 
= IlKxl12?+ aellLx1l2 

> -y min{l, atl xH12. 

Thus, the self-adjoint operator K*K+caL*L is bounded below, so that, by standard 
arguments, it follows that it is bijective, and its inverse is a bounded linear operator 
from X onto D(L*L). E 

Locker and Prenter [14] derive their results under the assumption that 

(i) N(K) n N(L) = {0}; 
(ii) R(L) is closed; 

(iii) there exists a 7yo > 0 such that 

IlKxll >? yoIxIl for all x E N(L). 
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In the sequel, we will call these conditions the Locker-Prenter conditions. The next 
proposition explores the interrelationship between the completion condition and 
the Locker-Prenter conditions. 

Proposition 3.2. If the Locker-Prenter conditions (i), (ii), (iii) hold, then the 
completion condition (6) holds as well for some y > 0. On the other hand, if 
the completion condition (6) holds, then the Locker-Prenter conditions (i) and (iii) 
hold. 

Proof. The operator F with Fx (Kx, Ly) E Y x Z maps D(L) into the product 
space Y x Z, which is a Hilbert space with respect to the induced inner product. 

Under the conditions (i),(ii), (iii), it can be seen (as in [14, Lemma 5.1]) that F is 
an injective closed linear operator with its range R(F) closed in Y x Z. Therefore, 
the inverse operator F`1: R(F) -? X is a closed linear operator between the 
Hilbert spaces R(F) and X, so that, by the Closed Graph Theorem, F-1 is a 
bounded linear operator; i.e.j there exists a constant c > 0 such that JIF-1(Fx) I < 

cllFxll,x E D(L); i.e., 711xI12 < IKx 12 + ILx 12,x E D(L), where -y = 1/c2. 
Starting from (6), the Locker-Prenter conditions (i) and (iii) are obvious conse- 

quences. LI 

Remark. The Locker-Prenter condition (ii) is not a natural consequence of (6). 

Clearly, (6) is satisfied if L is bounded below, which occurs when L is a strictly 
positive definite and self-adjoint operator with X = Z. 

In view of Proposition 3.1, let (, )* be the inner product and 1 be the 
corresponding norm on D(L) defined by 

(it, v)*: (Ku, Kv) + (Lu, Lv), u, v E D(L), 

and 

IIxII* := (IlKx2 + IlLx 2)2, x E D(L), 
respectively. Let X* be the Hilbert space D(L) with the inner product (, )* and 
let 

A: X* - Y be defined by Ax = Kx, x X*; 

i.e., A is the restriction of K to the space D(L) with inner product (, )*. Let AO 
and LO be the adjoints of A: X* -? Y and L: X* -? Z, respectively. It is shown in 
Locker and Prenter [14] that, on their respective domains, 

(7) 
A= (K*K + L*L)-K*, L - (K*K + L*L)-<L* and A0A + PL = I. 

As usual, the Moore-Penrose inverse of A: X* -? Y will be denoted by At. Note 
that, in general, At 74 Kt. 

4. EARLIER WORK 

In this section, we revisit some recent results on optimal-order methods. The 
choice of the regularizing operator imposes restrictions on the convergence rate. It 
is shown in [6, 24] that, for L = I, the best possible convergence rate is jIxj-xo II = 

0(62/3), and that this can be obtained if xo E R(K*K) and a = c6213 for some 
constant c > 0. If xo E R((K*K)V) with v > 1, the same rate holds, while, for 
v < 1, it is smaller (cf. [6, 24]). 
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For conipact, nondegenerate K, Tikhonov regularization, with L = I and xo E 
R(K*K), is optimal with respect to M = (K*K)t, since 

eM(p,6) = 0(62/3). 

However, when xo E R((K*K)v), M = [(K*K)t]v, and v > 1, one obtains 

eM (p, 8) --, 

while, for other M, one can achieve even higher rates (cf. Hegland [10]). In such 
situations, Tikhonov regularization, with L I, does not have optimal convergence 
rates. Nevertheless, optimality can be achieved through an appropriate choice of 
the regularizing operators (cf. [9, 10]). 

An example of Tikhonov regularization having optimal convergence rates was 
given by Natterer [20]. He considered the case Z = X and L - TA. k, > 0, 
where T: D(T) -? X is a densely defined strictly ipositive definite and self-adjoint 
operator. Furthermore, he assumed that there exist positive reals 7Y1 and 72, such 
that 

(8) y1llXlK-a < jjKxij < 7211X11-a, X E X, 

for some positive real a. Here, lixtir := IITrxjt, x E D(Tr), for real r. Taking Hr to 
be the Hilbert space obtained through the completion of fl D(TV) with respect 
to the norm x F-+ lxllr, Natterer proved the following result. 

Theorem 4.1 (Natterer [20]). If xo E H, with l~Ixojj < p, s < 2k + a and 
(5)2(a+k) 

a = C(s) a+s then 

IIXo - X4I11 = 0(84)- 

In particular, if s = 2k + a, then 

jXO 
- xCI, 

11 = ?(6 a+2k 

The above estimate of Natterer is optimal with respect to the choice M = TS, 
as it is known, for this case, that eM(p, 6) = 0(84as). Note that, in the above re- 
sult, an a priori parameter choice was used. Neubauer [21] suggested an a posteriori 
method which leads to the above result of Natterer. A similar result using an a pos- 
teriori choice can be found in [9]. Thus, for x E R((K*K)v) (e.g., T,= [(K*K)2]t), 

s = 2v and a = 1, the order is 0(62v/(2v+1)) if k > v - 0.5. This is achieved 
by imposing minimal 'smoothness' on the regularizing operator L. However, by 
choosing a smoother operator, the convergence rate governed by the smoothness of 
the data is maintained. This idea was further pursued by Hegland [10] and has led 
to a method which gives optimal convergence rates for all v > 0. 

Theorem 4.2 (Hegland [10]). Let K be compact with singular value decomposition 
K = o? ui 0 vi. Furthermore, let 

00 

L = E(U/Ui)lOg(i)vi ? Vi 
i=O 

and ca be chosen such that IlKx5 Y,5 = 26. Then, for any v > 0 and x E 
R((K*K)v), one has optimal convergence, i.e., 

jjxo - x4511 = 0(62V/(2v+l) 
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In his convergence analysis for L = I, Schock [23] proved, for his parameter 
choice (4) with p = 4q(q + 1)/(6q + 1), that 

ljxO - x 11 =0(62/(3+0.5q-1)) 

for xo E R(K*K). This is asymptotically optimal in, q. 
Recently, it was found by Nair [19] and George and Nair [4, 5] that Schock's 

parameter choice can actually also give rise to optimal convergence rates. 

Theorem 4.3 (George and Nair [4, 5]). For a fixed pair of positive reals p and q, 
there exists a unique ae= a(6) satisfying (4), and we have the following: 

(i) a = 0 (6 p); 
(ii) if y E R(K), x := Kty E R((K*K)f), v > 0, and 

_ _ 1 1 
<- with w=min{l,v+-}, 

q+1 w 2 
then 

8p _ _ _ _ 

= 0(6t), t P +W 

(iii) if p < 2q + 2q then 2q+l' 

II|-4xI -O as 6 O ; 

(iv) if y C R(K), xi E R((K*K)v), 0 < v < 1, and 

p 1 2' 
q+1 <mini., 1+0-,)b 

q 

then 

ii'x - 1 
where r - min{ PV'1, -2(q?1) (1 + 1-W)}. 

In particular, when xo E R(K*K) and p = 2(q + 1), these authors establish 
x1 - xoI - (62/3). Similar results, for other L, are derived below. 

For K and L satisfying the Locker-Prenter conditions (i), (ii), (iii), Engl and 
Neubauer [3] considered the discrepancy principle 

(9) 1 - a)AOAxb - AOyb = P (_0 < at < 1, p > O, q > 0, 

where AO is as in (7), and proved the following result. 

Theorem 4.4 (Engl and Neubauer [3]). If 2q > p > 0 and y E D(At), then for 
8 > 0 small enough, there exists oa .= a(6) E (0, 1) such that (9) is satisfied and 

Ixo-x5*--4 0 as 0, 

where xo = Aty. 
Moreover, 
(a) p= =(q + 1), xo E D(L*L) and L*Lxo C R(K*K) imply 

(10) lIxo - x11 = 3 

(b) p = q + 1, xo E D(L*L) and L*Lxo E R(K*) imply 

(11) llxo - xI II* = 0(61 ). 
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Note, in particular, that for p = 2 and q = 1, and L = I, these authors obtain 
the optimal error rate 0(62/3) provided xo E R(K*K). 

Since, by (6), llxo - 11* > llxo-x' 11, it follows that (10) and (11) also yield 
estimates for the error with respect to the original norm on X. A natural question 
which arises is whether one can obtain better estimates for llxo -x 11 than the 
ones provided in (10) and (11). Clearly, convergence in the original norm does not 
have to be faster than in the norm 1 .11* For example, if un = Anu for some fixed 
u E D(L), then this sequence is of order O(An) with respect to both norms. 

5. CHARACTERIZATION OF THE TRADE-OFF 

In this section, it is shown how, in conjunction with a modified form of the 
parameter choice strategy (4), convergence rates can be improved through the choice 
of appropriate regularizing operators. 

Initially, we observe (cf. [14, Remark 4.6]) that the least squares solution xo E SY) 
minimizing the norm x F-llxll*, is exactly the same as the one which minimizes 
the seminorm x F > IlLxlI. In fact, since Kx = Kxo for every least squares solution 
x E Sy, it follows that 

IIKxoH2 + IlLxo 12 = IIxol* ? IIKxII2 + IILxIL2, 

and hence, 

iILxoII2 < IlLXII2. 

Thus, the least squares solution xO minimizes the seminorm x F-- IILxll. The con- 
verse is also true. 

The key to understanding the general case is the following argument of Locker 
and Prenter [14], which reduces the situation to the case L = I. With 0 < ae < 1, 
let x, and x5 be the solutions of the equations (2) and (3), respectively. Applying 
the operator (K*K + L*L)1 to both sides of the equations (2) and (3) yields 

(AA + /3I)Xc, = (1 + /)AOy 

and 

(12) (AOA + /I)x'5 = (1 + /)AOy3, 

respectively, where 3 = i<,g 0 < ae < 1. These equations are the regularized 
equations for the problem Ax = (1 + 3)y, A: X* -? Y, with regularizing operator 
L = I, and regularization parameter 3. Since (1 + ,3)y - y as ,3 -O 0, it follows 
that (using standard arguments as in [6]) 

lIx- xall* - O as a >-0 

provided y E D(At), and furthermore 

llxcI!-az I5* < (I1+:X 

By the triangle inequality, 

IIxo - xE 11* < llxo - x0ll* + (1 + O X, 

where xo is the least squares solution of (1) minimizing the norm x- llxll*. 
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We propose that the regularization parameter ae in (3) (or equivalently, 3 in 
(12)) be chosen so that the equality 

(13) IlKx4-(1 +43)y'll = 6p 
a 

'~~~~~ 3 q 

holds for some preassigned p > 0 and q > 0. The above parameter strategy has 
properties similar to (9), as established by Engl and Neubauer [3]. Here, however, 
it is simpler to evaluate. 

The following theorem is a generalization of Theorem 4.3 to the case of a general 
L. 

Theorem 5.1. For a fixed pair (p, q) of positive reals and for each 6 sufficiently 
small, say 0 < 6 < 6o, there exists a unique a := c(6) satisfying (13). Moreover, 

(i) p= O(q+1 ) 
(ii) if y E R(A), xo E R((A0A)v), v > 0, and 

<- with w = rnin{1, v + -}, 
q+1 w 2 

then 

6p ~ _PW 
q= 0(6t), t=q+l 

13q q +1I 

(iii) ifp<2q+ 2q then 2q+1l 

11xo 
- 25 11* o-+ 0as 6 0; 

(iv) if y E R(A), xo E R((AOA)v), 0 < v < 1, and 

p 1 2 
-<q+1 

- + (1-W)} 

then 

11xo - x' 11* =0(r), 

with r = mint{$, 1- 2(q+1) (1+ 1)} and w= min{1, v + }. 

Proof. The proof proceeds exactly along the same lines as for the case L = I (cf. 
Theorem 4.3). D1 

Remark. FRom (7) it follows that 

R(AOA) = {x E D(L*L) L*Lx E R(K*K)} 

and 

(14) R(AO) = {x E D(L*L) L*Lx E R(K*)}, 

so that Theorem 5.1 includes the conclusions of Theorem 4.4 on taking q+1 = 
2 V = 1 to obtain (10), and P = 1, v =1 to obtain (11) 3' ' q+1 2' n(1) 

As a consequence, we can now derive the following theorem about the conver- 
gence rate in the original norm. 
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Theorem 5.2. If y E R(A), xo E R((AOA)v), 0 < v K 1, 

_p 1 21 
+?1 ?mint-, 1 1-w } with w = min{l, v + ?}' 

and M: D(L) -* Y x Z defined by Mx = (Kx, Lx), x E D(L), then 

IIXo - x I < C eMQ(65, Et), 

where , = min{t', 1l- 2(P 1) ( + 1w )}, t = q+t, and c > 0 is a constant. 

In particular, if p q + 1, then 

Hxo - x| < C eM(S1, 5) 

for every v > 1; and if p = (q + 1), then 

Hxo - x6 < C eM (6213, 62/3) 

fortv = 1. 

Proof. By the definition of the norm on the product space Y x Z, we have IMxl = 

IIX||, x E D(L). Now, Theorem 5.1 (iv) implies 

IIM(xo - x )l ?c, 

and Theorem 5.1 (i), (ii) imply 

IK(x - xo) || = |Kx6 -y 

< IlKx' - (1 + 3)y6|l + 1(1 + )yn -y 

(15) 6 
(< ? +/31yll + (1 + 3)611 

- 0(St). 

From these observations, the results follow. D 

In order to discuss this result further, we need to make some assumptions about 
the nature of our operators K and L. We will apply the interpolation inequality in 
the framework of Hilbert scales (cf. [13]). 

Let T: D(L) -* X be a densely defined, strictly positive definite and self-adjoint 
operator on X. The Hilbert scale {Xa}aER is the family of Hilbert spaces, where 
Xa is the completion of nk=l D(Tk) with respect to the norm x F-* >IxHla := IlTaxII, 
and Ta is defined using the spectral representation. We note that llxll = llxllo for 
all x E X. 

If a < b, then there is a continuous embedding Xb - Xa, and therefore the norm 
11 * Ila is also defined on Xb. Further, for a < b < c, the interpolation inequality 

(16) IIxllb < IIxII'olIxII1-0 0 = c- b 

holds for all x E Xc (cf. [13]). 
Hilbert scales were used by Natterer [20] in, proving Theorem 4.1, and the fol- 

lowing result can be viewed as a generalization of his result. 

Theorem 5.3. Let K and L be such that for some a > 0, r > 0, c1 > 0 and C2 > 0, 
the conditions 

D(L) C Xr, 
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IIXII-a <cilKxll, x EX, 

and 

IIXIIr < C211XI|*, X E D(L), 

are satisfied. Then, under the assumptions and notations of Theorem 5.2, 

IIX- 0rt?aII < C36$t t = + a? 
,r?a 

for some constant C3 > 0. 

Proof. From the interpolation inequality (16) and the conditions on K and L, we 
get 

a r1 

~XH ? llXII r+a IIXII r+a 

a 

?3 IIXII*-+a IlKXll r+a. 

Now, Theorem 5.1 (iv) and the relation (15) imply the result. D 

Corollary 5.4. Let L = Tk for some k > 0 and 

IXIIK-a < IlKxll, xcE X, 

for some a > 0. Then, under the assumptions and notations of Theorem 5.2, 

lxo - x aII = 0(6e), = t=?O . 

Proof. This follows from Theorem 5.3 on taking r = k. D 

6. CONCLUDING REMARKS 

6.1. From the definition of x6, it follows that x6 E D(L*L) and L*LxE R(K*), 
and thus, using (14), that xE E R(AO) = R((AOA) ). Therefore, on taking 

M: D(M) := R(AO) -* Y x Z defined by Mx = (Kx, Lx), x E R(AO), 

instead of M, and v = in Theorem 5.2, it follows that 

IIXo - xJ 11 = O(ej(#oj a)) 

for all xo E M. This shows that the above method, defined by R(y6, S) = x6 is 

optimal with respect to the operator M. 

6.2. If v > 1 in Theorems 5.1 and 5.2, then the maximum value of r1 is attained 
when q+1 = 2 ,+1' for which r1 equals 2i+1. Consequently, the maximum value of 
t in Theorem 5.3 is given by 

2(r?+av\ 
(v) = 2 ( < v <1. 

It is easily seen that, if r > a, then the function v F-* t(v) is decreasing with 2' 
respect to v E [ 2, 1], and 

2 (1/2) = 2r ? a 
t(1/2) = 2(r?+a) ?(l) =2/3. 



204 M. THAMBAN NAIR, MARKUS HEGLAND, AND ROBERT S. ANDERSSEN 

Thus, for v > 1 and r >?, the best rate is obtained when = , i.e., 
- 2 q+1-1i., 

IIX -Xl I =OW, =2r?+a 2(r + a)' 
Note that the above convergence rate is independent of v, i.e., large values of v 
have no effect on the convergence rate unless a different regularizing operator L is 
introduced. However, by requiring L to have appropriate smoothing properties, we 

21 get a convergence rate close to 0(S). This is clear from Corollary 5.4 with vi =2' 
for then the error estimate is 

||Xo 
- 

xa 

|| 

= 
2k+2a ) (; ) 

for large values of k. 
The above rate is the best possible rate of Natterer [20] (cf. Theorem 3.2) ob- 

tained using similar assumptions. 
If we choose a weaker regularizing operator with r < a, we see that the function 

vi_- t(v) is increasing on [1, 1], and, in this case, we have t(v) > 2-r+a > 1 
2 1 1 ~~~~~-2(r+a)'I - 2' 

and the best rate possible is 0(62/3), which is attained, for v = 1 and q1 = -2 
q1 3. 

Note that this rate is already obtained for r = 0 ! Thus, for less smooth data, we 
can end up with lower convergence rates than the ones possible for the case L = I. 

The case of v < 1 can also be analyzed in a similar manner by using the function 

( ) 2 1 2 rw ?av 
2v?+1?l74 \r?+a9 

with w = v + 2 v VE [?v 2]. 

6.3. If y E R(A) and no additional regularity is assumed for xo (i.e., v = 0), then 

w = 2 so that the requirement on p and q in Theorems 5.2 and 5.3 is + < 4q 2 1 I ~~~~~~~~~~~~q+1 - 2q+l1 
p - 4q ___ 

In this case, taking q+1 2q+1' we have r1 = 0, and t = 2q+l, so that the results 

in Theorems 5.2 and 5.3 yield 

xo - x4 || < c eM(l, 61), t 2q 
2q? 1' 

and 

IIX0 xIa I = O ), t2qr 
(2q + 1)(r + a)' 

respectively, whereas the results in Theorems 4.3 and 4.4 yield only 

llxo - Xll < llxo - x1a I*= 0(1). 

6.4. Integral equations. The previous theory is applied to the practical problem 
of reconstructing solutions of integral equations from measured data. In this case, 
X = Y = L2 [0, 1], while K is a Fredholm integral operator of the first kind, 

Kx(s) = j k(s,t)x(t)dt, s E [0,11. 

Examples include the Laplace transform where k(s, t) = e-St. 

An easily computed regularizer is 

L = d /dtk. 

For this choice, the theory of Natterer [20] is not applicable to integral operators 
K where the kernels are smooth like those for the Laplace transform. This is so 
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because the condition y IXII -a < IlKxll (cf. equation (8)) cannot hold for all x in 
such situations. 

Theorem 4.4 is more widely applicable than Natterer's [20] but it gives conver- 
gence rates independent of the regularizer L. On the other hand, Theorem 5.2 is 
also widely applicable, and, in particular, it shows how the choice of the regular- 
izer affects the convergence rates. The errors are expressed in terms of the "best 
worst-case error" eM of the operator M = (K, L). It remains to compute eM for 
particular operators. This has been done in [10, 11] for operators satisfying the 
conditions of Theorem 3.1 in [11]. 

In [11], the method is applied to three examples: Numerical differentiation, the 
numerical solution of Abel's integral equation, and the solution of Fredholm integral 
equations of the first kind with smooth kernels. It is shown how convergence rates 
very close to 0(3) can be achieved. However, in the case of very smooth kernels 
k(s, t), it is also observed in [11] that the choice of differential operators as regular- 
izers can only have a limited effect on convergence. Typically, in such situations, 
convergence is only improved by a factor log(1/3), so that other regularizers are 
required if enhanced performance is required. 
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